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Energy-SavlnR Policy 

In concert with the national mcve to implement energy-saving policy 

Colorado State University is operating at daytime temperatures of 65° 

and reducing the level of nighttime lighting.  The faculty and student 

body have traditionally been pedestrian-and cycle-oriented as 

evidenced by the absence of through-traffic on campus.  Airline travel 

has been reduced to the minimum level consistent with the tasks spelled 

out in the contract. 
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I Introduction 

In this report we investigate the performance of several different 

communications systems.  The receiver structures for all of these systems 

belong to a family which we will call the family of predistorted-replica 

correlation receivers.  This terminology arises because of the differences 

between a "predistorted-replica correlation receiver" and the well known 

correlation receiver (or matched filter).  The latter uses a stored 

reference signal and correlates this with the received process, whereas 

the former derives its "reference waveform" directly from the received 

process. 

We will begin our discussion by considering the conventional binary 

antipodal pulse-amplitude modulation (PAM) system, for which the trans- 

mitted signal is assumed to be of the form: 

x(t) ■• I *, s(t - kT) 
k=0 K 

(1.1) 

where m, e {-1, 1} and s(a) = 0 for all a i   [0,T).  For coherent 

00 

communication, the receiver's task is to estimate the sequence tmJ.}k_Q• 

As is well known, for the case that the received process is given jy 

r(t) = 0 x(t) + n(t) (1.2) 

where S  is the channel attenuation constant, and n(t)  is a white 

Gaussian noise process, the optimal receiver is the correlation receiver 

shown in Figure 1.1, with S(t) = x(t), sref((t)T) = s((t)T), where 

(t),, " t modulo T.  The term "optimal" is used here as "the best that 

can be done for any reasonable criterion of goodness without making use 

of the source dynamics." The reader is referred to ([1] - [A]) for 

a more lucid discussion of these points. 
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Figure 1.1 The correlation receiver 

_ 

«M 



Now, if the channel is such that the signal component, S(t), of 

the received process, r(t), can be written as 

S(t) ' I      \  sd(t - kT), (1.3) 

where sAa)  ■ 0 for all a i  [0,T), it is easily seen that the receiver 
d 

of Figure 1.1 retains its optimaiity with sref ((t)T), for the case 

chat s (.)  is unknown, one can either use  •r#fC<t)j) - 8((t)T)  and 

suffer the resulting degradation in performance, or resort to a different 

receiver structure, thus leading us to the so-called family of predistorted 

replica correlation receivers. 



II  Fixed Lag Autocorrelation Receiver 

A.  Continuous Time 

We begin our discussion of predistorted replica correlation receivers 

with the Fixed Lag Autocorrelation (FLAC) receiver.  Consider the 

receiver structure illustrated in Figure 2.1, which is a continuous-time 

version of the system proposed by Farden [5 ]. The output of the cor- 

relator, y(t), can be written as 

y(t) = 

t-T 

r(T)r(T - T)dT 

S(T)S(T - T)dT + / S(T)n(T - T)dT 
t-T 

S(T - T)n(T)dT + / n(T)n(T - T)dT. 
t-T 

(2.1) 

If the signal component, S(t), of the received process, r(t), can be 

written as 

S(t) = m s ((t).), 

[f]  d   T 

where [x] denotes the "largest integer contained in x," (t) =t modulo T, 

s (o) = 0 for all a j.  [0,T), and n(t)  is Gaussian White Noise (OWN), 

we can easily obtain 

Z(t) - E{y(t)} - / m T m T _ s,((T)T)S,((T-T)T)dT.       (2.3) 
t-T  [i]  [^1  d   T d     T 

The functions (Ct)  and [-*r]are illustrated in Figure 2.2 for 

C e {.75, 1. 1.25}.  Finally, at t = (k+l)T, we nave 

_»Li «M 
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Figure 2.1 The continuous time fixed-lag autocorrelation receiver 
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where 

z,   =E{y(t)}l 
t-(k+l)T 

(k+l)T       2,,   .   v . 
AVi  J     sd ((T)T)dT 

kT 

\VlCsd  (0)' 

C        (Y)   =   /   S.(T)   s   (T-Y)dT 

(2.4) 

(2.5) 

Carefully note that C  (.) is not a cyclic correlation and that 
Sd 

s (o) E 0 for all a i   [0,T). This result suggests that if the sequence 
d 

{IIL}
00
   is a differentially encoded version of some information bearing 

seauence {\>  f    , the FLAG system has some chance of success, at least 
'       k k=l 

for high signal-to-noise ratios. The differential encoding scheme to 

be used at the transmitter is the following (for mo » 1, and k=1,2,3,...). 

IVi« if bk = 1 

\ 
(2.6a) 

A-i . if bk = -i. 

or conversely. 

(2.'ib) 
1.   if ^ Vl = 1 

[-1,   if n^ Vl - -1 

Now,  suppose that the signal component of the received signal has 

suffered a Doppler shift,   i.e.. 

S(t) = m __  s (at)_), 
(f i "d~'" T 

The mean of the correlator output (2.3) becomes 

(2.7) 

\'x) ' *    ■rlli 'riÜ=IIi -d^^V^^^V^-  (2-8) 
t-»     L rp I   I    "r    I 

Using the change of variable u - "y . and defining « ■ ^ and 

^.'(x) - zr(t), we have 

^^ 



■1 (x)-|   /   m,} m s ((u) T) s ((u-O^du. 
x-C [u-ci 

I I 

Partitioning the  interval   [x-^x]  as: 

a.    .   x_c <  a^    <  a'     <   ...< a^    - x. 

i 

so that    [»)- k+nr   [u-C] = k+P^    for all u ^[a^,  a^)  for    t = 1,2 L, 

where k ■ [x]  we may write: 

z>>  " f    J    -k+n    Vf    I'    8d((u)lT)  8
d<(u-^lT>du- 

£=1 I IJ 
l-l 

Furthermore, defining a^ - a^  " k " n£« b^ 
= al " k ' V and 

^l'^l'*^  We obtain: 

<*> - 7 I    "Hc+n VP  ' sd^)8d((u+qrOT)du.  (2.9) 
£=i "   i        la 

It is easily shown that for £; e (1/2, 3/2), we have n£ e {-2, -1, 0}, 

and P e (-3, -2, -1, 0}. Table 2.1 shows all of the parameters 

necessary for the computation of (2.9) for any known signal sd(.) and 

for any value of ^ e (1/2, 3/2). 

Whereas in the absence of Doppler shift, information was being 

sent and received at the rate of one bit/T seconds, with a Doppler shift, 

information is being received at the rate of one bit/- T seconds; hence, 

the receiver must observe the correlator output and make a decision once 

every T/^ seconds. Consequently, we will now investigate when the 

maxima and minima of (2.9) should occur. Hopefully, the maxima and 

minima of (2.9) will occur for the values of x for which the quantity 

ßx - maxO^) 
(2.10) 

is maximum with the constraint that    q    -1.     Applying this criteria with 

I^M 
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Table 2.1 

Parameter values for computing output of FLAG receiver 

(a) 1/2 < £ < 1 

(x)1 e{.} 1 

1 

2 

a* 

c 

bil 

1 -i 

-2 

-1 

qÄ 

[0, 2C - 1) (x)1 + 1 - 

5 

1 

0 

0 (x)1 0 -1 1 

[25 - 1.  0 (x)1 + 1 - 

0 

c 1 

(x)1 

-1 

0 

-1 

-1 

0 

1 

[C. 1) (x)1 - C 

c 

^? 

c 
(x)1 

5 ■ i 

0 

0 

-1 

0 

1 

0 

(x)1 e{.} a£ bii 

i -1 

0 

-2 

-1 

«a 
[0. 1) (x)1 

0 

1 

1 

(c)  1 < C < 3/2 

(x)1 e{.} al 

c 1 

C - l 

-2 

-1 

-3 

-3 

«a 
[0, c - 1 (x)1 + 2 - 

0 

i 

2 

c - 1 1 -1 -2 1 

0 (x)1 0 -2 2 

[C-l. 25-2) (x)1 + 1 - 

5 - 1 

5 C - l 

1 

-1 

-1 

-3 

-2 

2 

1 

0 C - l 0 _2 2 

c - i (x)1 0 -1 1 

[2C - 2, 1) (x)1 + 1 - 

0 

• 5 1 

5 -1 

-1 

0 

-2 

-2 

1 

2 

5 - 1 (x). 0 -1 1 

kLH 
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the aid of Table 2.1, we find that (i) for 1/2 < £ < 1, B  attains 

its maxlmura value of C for (x) - K,   (ii) for C -1, ß  attains its 

maximum value of 1 for  (x) = 0, and (iii) for 1 < C < 3/2, ßx 

attains its maximum value of  2 - £ whenever  (x). e [0, 2C - 2]. 

Using these results, we find that for 1/2 < C < 1 and x = k + C: 

■J <«>  £ % \ . 1 / sd(uT)sd((u -t- 1 - C)T)du 

t-W-iV ««-m). (2.11) 

where the last equality follows from (2.5) and the fact that 8.(a) =  0 

for all a i  [0, T).  Similarly, we find that for 1 < C < 3/2 and 

(x)1 e [0, C - 1) 

zf (x) " I "k - 2 m k - 3 ( 
J       sd(uT)sd((u + l-C)T)du 

+ H-1\-3 v((5-2)T)+H-^-2 cs,((5-i)T) 

(x). 
+ t "k "He- 2 ' 8d(

uT)8d<(
u + 2 " OVdu, (2.12) 

whereas, for 1 < ^ < 3/2 and  (x)1 e [C - 1, 2£.  -■ 2], we obtain: 

C-l 

M^l-t. 
sd(uT)sd((u + 2-C)T)du 

'■I  (x) "^mk-l\-3i, 

+ Imk-l\-2Cs/^-
1)T)+I%\-2Cs/(?-2)T) 

(x). 
+ £mk\-l^   sd(uT)sd((u + l-C)T)du.      (2.13) 

Finally, a worst case analysis of both (2.12) and (2.13) ^ _ i "^ _ 2 ""^ 

\-2\-3  ■\-lnik-3 '\\-2 '  -1 in (2-12) ^^-l"^^- l' 

\-l\-3'\\-2'\\.l    =-1 ^ (2.13)) yields 

z).  (x) > i C„ ((C-l)T)-7 {(?-!)?_ + |C iU -  2)T)|}, (2.1A) -C 's max    s 
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where we have defined 

Pmax = T •■«  sd (uT)' 
u e[0,l) 

so that  for    |b - a|   <  1, we have 

|   / s.(uT)s,((u - Y)T)du|   1-^-^ d^'^d P T max 

Now define the gain of the system against Doppler to be G a |sl (x}j/C (0) 
C      Sd 

From (2.11) with 1/2 < 5 < 1,  x = k + C and m, m,    = 1, we have 

(2.15) 
0d 

From (2.1A), for 1   '  i <  3/2: 

G - I |C  ((5 - ])T)|/C (0), 
*  Sd sd 

s       d d 
(2.16) 

Suppose for a first approximation that s.(.)  has time bandwidth 
d 

product TW and that  C  (y) is given by: 

C (Y) - 
Sd 

Cc (0) (1 - |Y1W), for  |Y| < | 

, elsewhere 

(2.17) 

For this choice of C  (.), (2.16) becomes, for P   - 2C (0), TW > 2, 
s, max    s,  '   — ' 

1   d d 

and 1 < C < 1 't' =: 
—    TW 

3 - 2^ - U - 1) TW 

whereas (2.15) becomes, for I - dh 1 C < 1, 

(2.18) 

1 -   (1 -   -)TW 
(;   =       _^1 (2#19) 

Figure 2.3  illustrates equations  (2.18)  and   (2.19)   for    TW e  {2,   5,  10, 

20,  50}. 

, 
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1.05 

Figure 2.3 FLAG Doppler Gain, G, vs. Doppler Shift, C 

mm 



13 

B.  The Discrete Time FLAG System 

We will now discuss a discrete time version of the FLAG system. 

The carrier signal s(t) will be extended for all t ^ 0 via the rela- 

tionship s(t) ■ s((t)_).  For definiteness s(t) will be considered 

to be a sampled and held version of a pseudorandom noise sequence (PRS) 

which assumes the binary values of +1.  Such sequences are easily 

generated by simple shift register circuts, and have desirable auto- 

correlation characteristics [6].  The value of s(t)  for 

kNT <_T <   (k + 1) NT, k ■ 0, 1, 2,..., will be denoted as s , where 

N and T are positive numbers whose significance will become apparent 

momentarily. With this notation, the autocorrelation of s is defined 

as 

k-1 

Wl k=0 
sk Vi 

/'•■ 

V 

1 ^ nK, n - 0, +1, +2,... 

K, 1 = nK 
(2.20) 

where K is the period of the PRS, i.e., s ■ s,   for all k ^ 0. 

The actual value of K is determined by the bit length, BL, of the 

BL 
shift register which is used to generate the PRS: K ■ 2  - 1; hence, 

a typical PRS might have a period of 3, 7, 15,..., 1023, 2047, 4095, etc. 

Figure 2.4 illustrates two typical pseudorandom sequences of period 

15 and 31, along with their respective autocorrelation sequences.  Note 

that, for 1 ?* nK, for integral n, G. « -1. 

/ 
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Construction of the FLAG transmitter Is shown schematically in 

Figure 2.5. 

NT second 

Clock 

d 'K-l 'K-Z &r* To 
Transducer 

Figure 2.5 Discrete-time FLAG transmitter 

The output a.  is seen to be 

ok ■ m k sk, k » 0, 1, 2,... 

where the sequences {b. } and {m, } are .he original information 

bearing sequence and the resultant encoded sequence, respectively, both 

of which were Introduced earlier. 

At the receiver, the analog input is sampled every T seconds to 

produce an input sequence {R }.  Thus, under Dopplerless conditions 

each transmitted bit m ,  s  is sampled N times (N will usually be 

lKJ 

taken as an Integer), with each sample shifted into a shift register 

train (Figure 2.6) composed of two individual shift registers, each 

of length L.  At the P   bit position of each register the product 

P   P 
a = a (nT) « R   „ R   .   „is calculated, and the receiver output 
n n-Pn — L- r 

Y  is taken to be 
n 

_■ 
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L-l    p    L-l 

• 'Ia" %l R-p R— (2.21) 

{*«} R«. n-l {n-2 

♦a1 Y a'-H» 

L> 
yn 

Rn- n-L 

•    •    • VL+2 R«. n-L+l 

1 "1 ^M 
Rn-L-I Rn-L-2 

Rn-2L+2 Rn- n-2L+l 

p=        0 I L-2 L-l 

Figure 2.6 Discrete-time FLAG receiver 

In order to obtain an expression for Y in terms of s, note that, 

with Doppier Ü, and under noiseless conditions, (recall that o^io^nHT)), 

R = R(nT) - a(CnT) = m    s(CnT) (2.22) 

Since K > 1 the whole part of 5n/N may be used in the subscript of 

m, and, for the signal being considered, sUnT) - s   , so that (2.22) 

may be written as 

(2.23) R = m ,  s 
n   ,£1,  .^n 

lNKJ  l N ' 
By defining n^ and sk as zero for k < 0, equation (2.21) may 

be written as 

L-l 
Yn"J0   "yifedSIl m[£(n-f2-SLl  8(5(n-P)T)sa(n-P-L)T) 

(2.24) 

p-0   i^i^N   ! [1 KN 

• 

^M 
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for all n ^ 0.  Equation (2.24) is the general form for the receiver 

output; for the PRS-type signals being used ^2.24) becomes 

L-l 
Yn =

pL \lCn-f)} 
m g(n-P)-gL    Sran-P)     S g(n-P)-CL 

lKNJl KN JlNJl N J 

(2.25) 

If the m's in (2.25) are equal for 0 £ P ^ L - 1, it is desirable to 

maximize Y  for £ s 1, in which case the shift register length L 
n 

should be chosen as L = KN.  For if L is chosen in this way, the 

subscripts of s in (2.25), for 5 = 1, become [—=—]  and 
N 

[— K] ■ [—-—] - K, thus assuming a peak, as can be seen from (2.20). 

A typical output sequence is illustrated in Figure 2.7 for K » 15, 

N = 5, L « KK = 75, and C = 1, with the information sequence b. as 

indicated thereon. A feeling for the effects of Doppler (for the same 

values of K and L) can be obtained from Figure 2.8, a graph of 

JJ ^2^     ( t^e 2L was chosen arbitrarily) versus £, with m,  assumed 

to be +1 for all k.  Although any plot of Y  versus 5 is very 

dependent upon the PRS employed, and upon the shift register length L, 

some generalizations can be gleaned from Figure 2.8.  First, note that 

the value of Y   becomes very erratic and unpredictable for C out- 

side the range of approximately (K - 1)/K to (K + 1)/K, and secondly, 

the value of N does not seem to have a drastic effect upon the values 

In the graph. Specifically, the larger value of N seems to offer no 

improvement in system performance.  In fact, suppose N is taken to 

the limit in 

l       i NK_1 

Y« -± Y(nT) m±l      s(5(n-P)T)s(C(n-P-L)T) n  N       n ?m0 

For convenience, the product NT may be assumed constant at NT = 1, 

corresponding to the transmission of one bit of the PRS per second, so 

-    

im 
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that,   letting    t ■ nT,  there obtains  [7 ] 

Y' (t) - lim   J y(nT) - / 8(C(t - T))8(at - T) - CK)dT (2.26) 
N-»-« 0 

which is the counterpart of equation (2.8), with n^ = +1 for all  k. 

If 5 » (K-l)/K, or ; - (K + l)/K, the value of the integral in (2.26) 

is approximately zero, which indicates that the system is usable only 

for 1 - 1/K « F « 1 + 1/K, a region which shrinks with increasing 

K. 

The upshot of the above argument is that performance of the FLAG 

receiver with regard to Doppler cannot be dependably improved by 

sampling at a higher rate at the receiver, a result which is to be 

expected from the analysis undertaken previously. 

. 

^AJ «M 
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C.  Interference Sensitivity:  The FLAG System 

Suppose there are two signals impinging upon the FLAG receiver, 

one of which it is desired to detect, and the other of which is con- 

sidered to be interference. Denote by 5d, Kj, and Nd the parameters 

of the desired signal, and by ^ K^ and ^    the parameters of the 

undesired signal, where these symbols play the same role as their 

unsubscripted counterparts in Section II-B.  Further, let the desired 

signal, as transmitted, be given by 

a - m .  s, - m ,  s(t)   for 

[f 1 '   if 1 
Kd       Kd 

ItN T < t < (k + DN.T, k - 0, 1, 2 and let the undesired signal 
d — d 

be given by 

K' 3 k   ^ " J k x(t) for 

u        u 
kN T < t < (k + 1) N T. Then the received sequence {R^  is given by 

u — u 

R - m 

U.K.J IN.J   INUKUJ INJ 

+ J      X     , so that with inter- 
C n-,  r£ n- 

'd*\lJ l a 

ference (2.25) becomes 

L-l 
Y - J"  m 
n P-O 

Cd(n-P) 

KdNd 

L-l 
+ I mn 
P-0 

m 5d(n-P-L) 

^d_^lP) 
K
dNd 

KdNd 

( (n-P-L) 
u     

^d(n-P) 

K N u u 

N. 

Cd(n-P) 

5d (n-P-L) 

L-l 
+-L mIL(n-P-L)" 
P-0 

KdNd 
L-l 

P«0 

Jr C (n-P) u   
K N u u 

N. 

3|ed(n-P-L) 

N, 

C (n-L-P) 
u   

N 

Cu(n.P) 

K N u u 

Jr C (n-P-L) 
u  

K N u u 

Xr Cu(n-P) 
-t  Xr, 

N 

X ^(n-P)] 
N u 

L               J 
\  (n-P-L) 

u 
N u 

L (2.27) 

^^ 
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The first and fourth terms in (2.27) are autocorrelation sums, whereas 

the second and fourth terms are crosscorrelations of the two signals s 

and X.  It is a reasonable assumption that the periods K  and K  of 

s and X are unequal, and that the crosscorrelation of the two sig- 

nals will be approximately zero. Therefore, the second and third terms 

in (2.27) will hereafter be neglected, and the only term which will 

constitute interference will be the autocorrelation of x. 

BL 
Since K  and K, are of the form 2  - 1, for integral BL, 

u      d 

the relatiou between K  and K. must be either 
u      d 

Ä, K +8.-1, 
u 

z, j, ... (2.28) 

or K - i + 1 
u * - 2, 3, ... (2.29) 

Supposing this relation is given by (2.28), ond that L * KjNj, a 

contribution from the fourth term in (2.27) requires that the subscripts 

of X differ by kK , k - 0, +1, +2, ..., which is satisfied for 

k N K 
u u 

N.UK + I -1) 
d  u 

kN 
 u 
AN, 

f   k ^ uj xj /> ••• (2.30) 

where the approximation holds whenever IK    » I -  1. Thus, if N , Nj, 
N 
u   2, for example, then (2.30) lecomes and I    are chosen such that 

£N, 

5 - 0, 2, 4, ..., which is impractical, so that appreciable interference 

will not be observed. 

If K. and K  are related by (2.29), the autocorrelation of the 
d      u 

interference signal contributes to the output for 

kin  K          kin 
.    m u u  a  u 
^■u  N. (K - £ + 1) " Nj 

If 
N 
 u_ 
UN, 

is chosen as UN, 
2, then 

£N 

"i - - 21    >  8, and once again the values of £,      required for appreciable 

interference are impractical. 
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From the above discussion it is apparent that, if the bit rates 

NT and the periods K of all transmitters operating within a con- 

tiguous region can be controlled, then the FLAG receiver can be 

"tuned" to a particular transmitter by properly selecting the receiver 

shift register length L, and the sampling period T. 

/ 

" 
. 
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III  The Alternating Forward/Reverse Sequence Autocorrelation Receiver 

A.  Continuous Time 

In this section, the Alternating Reverse Sequence Autocorrelation 

(ARSAC) receiver is discussed.  The ARSAC system, conceived by 

Cornett ( 8], assumes the transmitted signal, x(t), is given by 

x(t) = m   s(t), 

[f] 

where t - (t)2T + 2 f^] (T- (t)2T), and {m^Q 

(3.1) 

is a differen- 

tially encoded version of some information sequence ^i^k»!' as ^n 

(2.6).  The functions Ct and  Rjr]  are illjs^rated in Figure 3.1 

for C e {.75, 1, 1.25}.  Note that the use of t as the argument 

for 8(.) in the transmitter has the effect of transmitting 8(.) 

alternately forwards and backwards.  Denoting the received process by 

r(t), the ARSAC receiver output, y(t), is given by 

T 

y(t) -  r(t - T)r(t - 2T + Odx. (3.2) 

Suppose that the signal component, S(t), of the received process, 

r(t) - S(t) + n(t), is given by S(t) ■ x(t), and that n(t)  is OWN. 

Defining z(t) - E{y(t)}, we obtain, for t - kT: 

z(t=kT) 
\ -lmk-2 j s((kT- T))s((kT-2T + T))dT 

-\-l\-2T 8((k-u)T)8((k-2 + u)T)du   (3.3) 

Suppose that there exists an a, b such that for all a e [a, b) we 

have  [a] " h, h a constant.  Then if h is even, we have aT ■ (a-h)T; 

and, if h is odd, we have aT > ( 1 + h - o)T.  Consequently, we find 

*m 
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from (3.3) that for k even, (k - u)T - (k - 2 + u)T = uT and for 

k odd, (k - u)T = (k - 2 + u)T - (1 - u)T, for all u e [0, T).  Finally, 

we find that (3.3) may be written as 

z(t -kT) •%.1%.2C,(0)I (3.4) 

where 

CS(Y) ■ I 8(T)S(T - Y)dT. 

We note that (3.4) and (2.4) are identical, indicating that the operation 

of the FLAG system and the ARSAC system are identical at t " kT, 

when there is no Doppler shift. 

Now, suppose that the signal component of the received process is 

given by 

S(t) - m _ s (Ct). 
[^1 d 

(3.5) 

Using (3.2), with r(t) - S(t) + n(t), n(t) GWN, and z^t) - E{y(t)}, 

we obtain 

T 
zc(t) ■ I ya-T). yct-tt^o. sd(Trr^T))sd(i(r^TTTT)dx. 

o l  T  J l   T   i 
(3.6) 

_ il it Making the change of variable u - ^r,  and defining x ■ -^ and 

z'(x) - z£.(t), we obtain 

•c M ■ t mr    , m [x-u] [x-2C + ul 8d((x-u)T) sd((x-2C + u)T)du. 

(3.7) 

Partitioning the interval [0, C] as 

0 - a0 < a1 < a2 < . . •< aL = C 

-«■ «M 
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such that, with x = k + (x) , we have [x - u] » k + n , and 

[x - 2C + u] » k + P^ for all u e [a^.j^. a^), we see that (3.7) may 

be written as 

zj(x) 

where 

i^+-^"J sd((x-u)T)8d((x-2C + u)T)du, (3.8) 

^-1 

and 

((x)1-u-n^)?, if k + n^ is even 

(x-u)T -< (3.9a^ 

(1-(x)1 + n^ + u)T, if k + n^ is odd; 

J((x)1 - 25 + u-PJl)T, if k + P£ is even 

(3 9b) 

(1- (x),+2C + P0-u)T, if k + P0  it: odd 

Table 3.1 gives all the parameters needed for the computation of (3.8) 

and (3.9) for 1/2 < C < 3/2. The maxima and minima of z' (x)  should 

occur for those values of x for which (x - u)T ■ (x - 2C + u)T in (3.8), 

After investigating the possibilities with the aid of (3.9), it is 

found that the maxima and minima will occur when 

(x). 

C, 1/2 < C < 1 

5 - 1, 1 < C < 3/2 

J3,  C - 1 

Using Table 3.1,   for    1/2 <  C < 1    and     (x)    - C,  we find 

I  s.((C-u)T)du,   for    k    even 

z;(x)      C%%-1    i (3.10) 

/ s  ((1-C + u)T)du,  for    k    odd 
u / 

MM 
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Table 3.1 

Parameter values for the computation of the output of the ARSAC receiver 

(a) 1/2 < g < 1 

(x)1 e {.} I 

1 0 -2 

V  1 a* 

[0,  C - 1/2) 0 (x)1 

2 -1 -2 (x)1 2C -  (x)1 - - 1 
3 -1 -1 2C -   (x)1 - 1 C 

U - 1/2,  2C - 1) 1 0 -2 0 2C -  (x^ - • 1 
2 0 -1 2^ -   (x)1 - 1 (x)1 

3 -1 -1 (x)1 5 

[2C - 1.  i) 1 0 -1 0 (x)1 

2 -1 -1 (x)1 c 
[€. i) 1 0 -1 0 24 -  (x)1 

2 0 0 

0>) 5 

2E. -   (x)1 

- 1 

5 

(x)1 e {.} C 

1 0 -2 

\-l aÄ 

[0,  1/2) 0 (x)1 

2 -1 -2 (x)1 1 - (x)1 

3 -1 -1 1 -  (x)1 1 

11/2,  1) 1 0 -2 0 1 - (x)1 

2 0 -1 1 -   (x)1 (x)1 

3 -1 -1 (x). 1 

I 
^M 
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Table 3.1 

Parameter values for the computation of the output of the ARSAC receiver 

(c) 1 < ^ < 3/2 

(x)1 c {.} 1 

0 -3 

aa - 1 a£ 

[0, C - 1) 0 (x)1 

-1 -3 (x)1 25 - (x)1 • - 2 

-1 -2 25 - (x)1 - 2 (x)1 + 1 

-2 -2 (x)1 + 1 5 

[5 - 1,  2K -  2) 0 -3 0 25 - (x)1 ■ - 2 

0 -2 25 - (x)1 - 2 (x)1 

-1 -2 (x)1 25 - (x)1 • - 1 

-1 -1 25 - (x)1 - 1 5 

[25 - 2, 5 - 1/2) 0 -2 0 (x)1 

-1 -2 (x)1 25 - (x)1 • - 1 

-1 -1 25 - (x)1 - 1 5 

U -  1/2, 1) 0 -2 0 25 - (x)1 • - 1 

0 -1 25 - (x)1 - 1 (x)1 

-1 -1 (x). 5 

^ 
- 
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Similarly, for  1 < 5 < 3/2 and (x) = r, - 1, we obtain 
r        i 
6-1 

s. ((C - 1 - u)T)du, for k even 
a 

z\   (x)"I\\-3 \ 
S"1 

s, ((2 - C + u)T)du, for k odd 
d 

v? 

+ f\-l\-2^ 

(3.11) 

s, ((1 - C + u)T)du, for k even 
d 

C-l 

Sj ((C - u)T)du, for k odd 
d 

6-1 

Now, defining the gain of the system against Doppier, G, as 

G - |zl(x)|/Cc (0), 
5     Sd 

and 

P   = T • max s.(uT), 
max        ,_ T Nd ue[0,l) 

we obtain, for 1/2 < 5 < 1. and (x)1 = C. 

G - 5 +   5   C  (0) ' 
Sd 

(3.12) 

whereas, for 1 < C < 3/2, (x)1 = 5-1, and mk 
m
k_3

=~\_i mk-2, 

r ^ i j. ü ~ Ü   max 
G - 5 +   C    C (0) ' 

Sd 

(3.13) 

The lower bounds of (3.12) and (3.13) are illustrated in Figure 3.2 for 

1/2 < C < 3/2 and P  /C (0) e {1.5, 2}. 
max s. 

/ 
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1.0»- 

Figure 3.2 Lower bound for ARSAC Doppler gain, G, vs. C, for P   =1.5 C (0) 

(upper curve), and r   = 2 C (0) (lower curve) 
inax     s j 

a 

max 

MM^ 
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B.  The Discrete Time ARSAC Receiver 

As before, the carrier signal s(t) will be assumed to be a 

sampled and held version of a PRS of period K, but with this system, 

the first K bits of the sequence must be transmitted alternately 

forwards and backwards.  By defining t    as t   H J + [~] (2K - 2J - 1), 
N , N        K , N       K 

with J = [—]    modulo 2K, the carrier signal may be taken as 
N 

s(t) ■ s. . >    which will be shortened to s-yr; when no confusion 

will result.  Here, N and T have the same meaning as in the previous 

section, so that one bit of the PRS is transmitted every NT seconds. 

A graph of the function £;t versus t can be seen in Figure 3.3, for 

5 e {.75, 1, 1.25}. 

The ARSAC transmitter is illustrated schematically in Figure 3.A. 

The transmitter output is a = m/. /T\  ■ ._, where a.  denotes a(t) for 

kNT 1 t < (k + 1)NT, k = 0, 1, 2..., and tK denotes [^]. 

At the receiver, the input is sampled every T seconds, providing 

an input sequence {R }, with each sample entered into a shift regisvar 

train composed of two shift registers, each of length L, one of which 

shifts to the right, and the other to the left, as is illustrated in 

Figure 3.5. 

The receiver output Y  is 

L-l p L-l 
Yn %^0 

an =pJ0 
Rn - P Rn - 2L + P + 1 

With Doppler C, R = «UnT) = a r ' ™,r  \    al~*  so that Y  is glven by 

L-l 
Yn =p^0 

ma(n-P))K 
m(5(n-2L + P + l))K 

8C(n-P) SC(n-2L + P + l7 

(3.14) 

«H 
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Equation (3.1A) is valid for all n >. 0 if it is agreed that m^-s^O 

for k < 0. 

Figure 3.6 illustrates a typical output sequence for K " 15, i ■ 5, 

L - KN - 75, and ^ = 0.81.  Note that the output becomes decorrelated 

between the peaks, which are manifested distinctly above what might be 

termed correlation "noise".  This represents another advantage over the 

FLAG system, in that estimates of the information bits may be made 

directly from the output amplitude, whereas such estimates must be 

made at specific times when using the FLAG receiver. 

The positions of the peaks in time, and the relative spacing 

between them may be determined somewhat heuristically by the following 

argument: After operation of the receiver has begun, the first data 

sample reaches the (L - l)st position of the first shift register 

after L - 1 steps.  Thereafter, an entire PRS group of K bits 

passes through this position and into the second shift register approxi- 

mately every NK/C  steps.  Thus, one might expect that a peak will 

occur in the output sequence Yn whenever n  is an integer close to 

L - 1 + kNK/C, k - 1, 2, 3   It will be shown below that this integer 

is actually n = {L - 1 + ^h where {x} denotes the smallest integer lx. 

In order to visualize the effects of Uoppler, assume for the 

moment that n^ = +1 for all k and define An as 

. , kNK     i. « i o    -x An = L - 1 + -T n, k = l, 2, J,..., 

where n is taken as n « {L - 1 + kNK/U.  Then -1 < An < 0, and the 

subscripts of  s in (3.14) become 

Un - p) = UL - 1 +^P-An - P) = kNK + CTE " P) " 5(1 + An) 

and 

^(n - 2L + P + r) - aL-l+iji-An-2L + P + l)-kNK-a(L-P) + ^n). 

^i^mt ^^^^ 
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Figure 3.3 indicates that 

kNK - x = kNK + x 

for all x such that 

mN < x < (m + 1)N, "> - 0, 1, 2,..., 

(equality may hold on the left for ■ - 0), so that the subscripts in 

(3.14) will be equal for P such that 

mN < 5(L - P) - Cd + An) < (m + 1)N 

and 

mN' < C(L - P) + Un < (m + 1)N. 

Choosing the tighter upper and lower bounds for t(L - P) begets 

mN + ai + An) < C(L-P) < (m + l)N - ^An, -1/2 < An <0 

and 

whence 

mN-^An < 5<L - P) < (m+1)N + 5(1 + An), -1 < An i-1/2 

L + An-(m+l)|<P<L-l-An-n| . -l/2< An <0 

L-1-An- (m+l)7<P- L + An-m^, -1< An 1-1/2 

(3.15) 

(3.16) 

The rationale for the particular choice of n may be interjected here. 

For consideration of equations (3.15) and (3.16) indicates that the 

greatest possibility oi satisfying these inequalities occurs whenever 

An - -1/2.  Since the difference between the maximum and minimum values 

of An must be at least one, the optimum range of An is -l<An<.0, 

as was chosen. 

To insure the existence of an integer between the bounds in (3.15) 

and (3.16) for every m requires that the segment width defined by 

these bounds bo Rreater than 1, which In turn require« that  N > 2C. 

Thus, if tho maximum possible value of  f,  is denoted as C^, it is 

necessary that N > 2C    for reasonably good operation of the system. 

/ 

^^ 
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Note that the larger the value of N, the more integers will lie 

inside the segments, with resulting better system performance. 

The above discussion indicates that bit misalignments will occur 

at the Pth position of the correlator shift registers whenever P 

satisfies 

L-1-An-— < P<L + An-m?,   -1/2 < An 1 0        (3.17) 
5 — * 

or 

L + An-m^lP lL-l-An-n|,  -1 < An 1-1/2 (3.18) 

for m - 1. 2. 3..... l| (L +An)], -1/2 < to < 0.  Th lengths of the 

intervals in (3.17) and (3.18) are given oy 

0 < 1 + 2An < 1,   -1/2 < An 1 0 

and 

0^-1 -2An < 1,    -1 < An ^ -1/2 

Hence, at most two integers may lie within the interval defined by (3.17), 

so that, for the worst possible case, a total of 

2[|a + An)] (for - ^ 1 An <p) 

bit misalignments may exist in the shift registers. 

Peak degradation will occur due to these misalignments only if the 

appropriate adjacent bits of s are of opposite polarity, as is shown 

in Figure 3.7, an illustration of a small section of the correlator 

shift registers. 

 Sfc  Sk  Sk Sk+| Sfc+i S^ Sk>| Sk4| Sk+| 8fc+j\»g 3^2 

■I 1 
I 

Sk    Sj    S,,    S,,  Sk+| S^., SM S^, Sk+| 8,,+, Sk+| ^j 

No Degradation ; J Degradation Occurs 

Figure 3.7    Bit misalignment  causing peak degradation 
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If degradation does occur, the magnitude of the peak will be lessened by 

2 (+1 is subtracted instead of added) for each bit which is misaligned 

and of polarity opposite that of an adjacent bit. Letting A
K(
R) 

denote the maximum number of polarity reversals in R bits of a PRS 

of period K (with successive groups of K bits transmitted alternately 

forwards and backwards), the maximum amount of degradation AY  which 

may occur due to Doppler is (2 bits misaligned per reversal) x (2 sub- 

tracted per misaligned bit) x (number reversals), so that 

AY^ = AA^UL/N}) (3.19) 
a    K. 

The value UL/N}  is simply the number of PRS bits which "fit" into 

each of the shift registers whenever a peak occurs. 

As an example, suppose K = 7, and that the PRS sequence is trans- 

mitted as 

^-i, i, -1/-1, i, i, i.^ 'i, i, i, -iT^i, i, -i; r-i, i. -I, -i....   s 

8
0 Sl s6 S6 S5 •  *  * 

Supposing further that L = NK, and C = 0.8, then (3.19) is evaluated 

as 

AY, 4A7 ({0.8 • ?}) - 4A7 ({5.6}) - 4A7 (6) 

In the sequence s-, s^...^ there are 3 polarity reversals, whereas 

in the s,, s^.-.s.  there are only 2 such reversals. Thus A (6) = 3, 
o  5    1 

and (3.19) evaluates to AYd - 12. 

In order to prove the advantages of the ARSAC receiver with regard 

to Doppler, let the normalized peak amplitude Y* be defined as 

L - AYj 
Y- ^ 

N 

Now, if L is proportional to N, i.e., L » BN, then Y* becomes 

AY, 
Y' - B - N 

B - 
4AK(Uß}) 

N 

^ 

mm 
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which tends to B as N tends to infinity, independently of £,.     Thus, 

relative peak degradation due to Joppler (with BL = +1 for all k, 

as was assumed earlier) can be nade arbitrarily small in the ARSAC 

system by increasing the sampling rate at the receiver. 

With the restriction that HL = +1 removed, the above analysis 

may have shortcomings, since the value of Y , for n ■ {L-l + kNK/C), 

may depend not only apon HL  and n^.j^ but also uPon mk + i and 

m  ,.  The continuous time analog of this problem was treated in 

Section IV-B. 

An analytical description of the situation is achieved by con- 

sidering the subscripts of m in (3.14), the first of which becomes, 

for n as given above, 

(C(n-P))K» (kNK+C(L-P) - S(l + An))K 

Employing the definition of t , this equation becomes 

(r(n    pn   rkNK-K£(L-P)-ai-hAn)  _    S(L - P) - gd-H An) 
(C(n-P))K- I      KN J   R  l      KN       ' 

Hence, the subscript under consideration remains constant at  k  if 

l(L-P) - ^l-^An)< 
u -       KN 

N 
which is satisfied for L - 1 - An - K- < P <. L -1. 

Similar treatment for the second subscript of m indicates that 

(5(n-2L + P + 1)),. remains constant at k - 1 if 

L + An •• K^ 1 P < I - 1, 

so that, since -1 < An ^ 0, both inequalities are satisfied for 

{L - K^} <P< L-l (3.20) 
€' - - 

For P outside this range the two subscripts become k + 1, and k - 2, 

respectively.  Therefore, under the worst possible conditions, which 

correspond to the products "^ "^ _ ! and \ + i \-2    bein8 of 

..- 
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opposite polarity, and to the exact alignments of all PRS bits in the 

Pth position of the shift registers, for 0 < P < {L-K-} = j, the 

peak amplitude is degraded by 

AY = 2 
m 

-°   I o. 
j > o 

j < 0 

Consideration of equation (3.20) shows that, if L  is such that 

L - KN/C 1 0, then the degradation AY  will be zero.  Thus, L can 
m 

be chosen so that L _< KN/C, which is satisfied for L = [KN/£  ]. 
max 

If L is chosen in this manner, only the degradation due to bit 

misalignments will contribute to peak amplitude reduction. 

In the above analysis it has been assumed that the received 

sequence {R^} is composed of signals emanating from a single trans- 

mitter, and that no interference is present from other systems in 

operation near the receiver.  If such is not the case, system operation 

may be impaired to the point that the desired signal is totally 

undetectable.  Consideration of this problem and of methods for achieving 

its remedy will be undertaken in the following section. 

,- 
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C.  Interference Sensitivity: The ARSAC System 

For convenience, let it be assumed at the outset that the encoded 

message bits are +1 for all time for both the desired and the undesired 

signal. Then the transmitted signals are given by 

and x; 

da u  u 

and (3.14) becomes 

L-l 
Y - I 8 s i s  P-0 «d(il-P)), - 0ad(n-2L+> + l)) 

d d 

L-l 
+ 1 s 

VNd 

P=0 (5d(n-P))KH.N/^u
(n-2L + P + 1»K.N d d u u 

L-l 

P=0 vsd 

L-l 

(^(n - 2L + P + 1))„  „ *a  (n - P) 
K., N.  ^u""  "'K ,N 
d  d u u 

+ i X(C..(n - P))., „ xa  (n - 2L + ? i- i)) 
P-0 vsuv"  '"K ,N  ^u' 

u u 

(3.21) 
K , N 
u  u 

Again it will be assumed that the second and third sums are negligible, 

so that only the first and fourth terms contribute to Y . No further 
n 

analysis is required; from the results of SectionIII-B one sees that 

the fourth term, which corresponds to the interference, peaks at 

n - {L - 1 + k K N /C }, 
u u  u 

for k • 1, 2, 3,....  Furthermore, the maximum possible value of this 

term, L, is the same as that for the first, desired term.  Hence, the 

peak due to the desired signal and the peak due to interference may be 

indistinguishable in amplitude, and since £, and C  are not in gen- 
d      u 

eral controllable, the relative position in time of these two peaks 

cannot be dependably established. 

L      — *^ 
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Although the above results were deduced with the assumption that 

the message bits for each signal were constant at +1, an unreasonable 

assumption, it is apparent that an equivalent situation may occur if 

a string of +1^ or -I's occurs in the message bit sequence corresponding 

to the interference signal. Therefore, it must be concluded that the 

ARSAC system exhibits poor interference characteristics. 

' 
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IV.  Noise Performance 

In this section we investigate the noise performance for the family 

of predistorted replica correlation receivers. We will be concerned 

with the computation of the cumulative distribution function (cdf) of 

the statistic z, given by 

(4.1) 
N  1  Z- 

where 

z   = 
1    T 
- R1 R2, 

Ri 
= Si + N. 

*I =    (ri.l' ri.2' 
• •. '   ''i.N^ 

»I =   (si,l' Si.2' 
..., ,1.II)' 

»I =   (ni.l' ■l^' • • •» "i.H^ 

n  |ic {1, 2}, H c {1, 2, .... N) is normally distributed with mean 
*»' 

2 2 
zero and variance o  (we will use the notation n^^ ^ ' N(0, o^^)), and 

E {nJ „ n. , } = o. 6. .6, .. 
i,l    j.k    i i,3 k,l 

S  is the (deterministic) signal com- 

ponent of the received data vector, R .  Several solutions to similar 

problems are available in the engineering literature (e.g. see [9 ] - [U]); 

however, since the results treated there are not applicable to the problem 

at hand, they will not be dealt with here. 

We begin our analysis by computing the characteristic function 

A (5), defined by 
z 

* (O *  E {eUz}, (4-2) 
z 

where E{ • 1  denotes statistical expectation.  Feller [12] suggests that 

if x  and x, are independent random variables with cdf's F^ and 

F», and characteristic functions (ch.f.'s) 4^ and <b2,  respectively, 

then y ■ x^ has the ch.f. *  given by 

^M 
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♦y(0 = (l)2(5x)dF1(x)  = (^1(Cx)dF2(x). (A. 3) 

12      2 
Making use of   (4.3)  and  the  fact  that    (fi (O  = exp{j   s      C- y   o    ?   }, 

ri,k 1,K 1 

we  find  that  the    ch.   f.     for  the random variable    yu " ri  u 'o k ^s 

given by 

*. (C) ■ exp 
j   Sltk

S2.^- j   (g2  Sl.k + qi S2.kH2] 
T  ^    2      2   r2 I 

1   -<» v 1 12 

or 1,22 22,2 
rr^      nx  2    2    2-1/2        P  sl.kC-  2   (q2 sl.k^0ls2^C 1 
(C)  =   (  l + o1 o     i  ) exp< ' 2—2~Y f 

: *> 1 + a1 a2C J 

Now,  defining 

(4.4) 

Cl " S1S2' 

2    T 2    T 
C2=02S1S1+01  S2S2' 

(4.5) 

and noting that our independence assumption implies that 
N 

Qu-tO  • « ♦  (C), we have 
NZ    k-1 yk 

41 (Nf z 
,   n   2 2 .2-2   P   V  - j C2f- 1 
) = (l + o o C )  expi s—2~2~r 

I. 1 +0, oM C J 
2 2  2 

■^l 02 5 

(4.6) 

since (p„ (») » A (5).  Defining the standardized random variable, n, by 
Nz N    z 

z - u 
n = (4.7) 

where 

and 

U2 - E {z}= T. 

^Li ^MMi «■ 
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2,2, 2      0? ö22    .   C2 
az = E{Z   } - wz •—g—+ ^' 

we obtain 

N 3       1 2 

♦,,(!> - <i +5 >2 «4—77p }. 
2  2 

(4.8) 

where ß = o ö2/Naz, B, = C1/a1a2, and ß2 = 
c^ai0l'    Unfortunately» 

the eh.f. (4.8) is not easily inverted to obtain the denisty function; 

however, all of the information about the density function is contained 

in (4.8).  From (^.8) we can obtain all of the moments, Mk = E{n }, 

using the relationship 

(-j) 
kdVl (4.9) 

dt   t=0 

Computationally, a somewhat loss tedious approach is to first compute 

the cumulants K, , using the relationship 

log *n(t) -l^ ^ ^ 
at)' (4.10) 

and noting that the moments, ü , and cumulants, 1C , are formally related 

by [13, p. 318] 

Kendall and Stuart [13, P- 69] have tabulated the first ten moments in terms 

of the first ten cumulants, which, for K = 0 and K = 1 are 

repeated in (4.12) 

u2 = l 

W3-K3 

W4 « KA + 3 

y5 = K5 + 10K3 (4.12) 
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y = K. + 15K. + 10Ko + 15 DO       4        J 

p = K7 + 21K5 + 35K4K3 + 105K3 

p = Kg + 28K6 + 56K5K3 + 35^ + 210K4 + 280K3 + 105 

yn = K. + 36K, + 84K,K0 + 126K(.K. + 378K, + 1260^^ 9   9    7     63      54     5      43 

+ 280K" + 1260K3 

y  = K  + 45K + 120K K3 + 210K,K/ + 630K, + 126KC + 2520KCK ^6"4 

+ 1575K^ + 2100^^ + 3150K.   + 6300K? + 945 
4 4  3 4 3 

5~3 

(4.12) 

The reader will recall that  for a standardized normal random variable. 

the only nonzero cumulant  is    Kl = 1    and  the nonzero moments are given 

by 

,-    =12*11 
^oo   '   """a    '   "   » ■'■»    *•    J»«»«« •21 I1!.'. 

(A. 13) 

Knowledge of the first few moments of n will enable us to compute 

an Edgeworth expansion [14] for the probability density function f , 

from which an approximation to the cdf F  is easily obtained. We 

now proceed in developing an expression for the cumulants K, . Defining 

h(0 - log <f> (e/3), we have 

h(0 
jßc3+^2c2 

f iog(i +jo -| iog(i - jo - -i- —:; - • 
l + c 

Using standard partial fraction techniques, and noting that 

(A. 14) 

00 k k+1 iog<i a« -1 muLin i 
k=l K 

we obtain 

(4.15) 

CO 

h(0 = I  [(j02k (^ + ^2) + h^0        l 

It follows that the cumulants, K, , are given by 

3kk:(k + iV'    k = 2. 4, 6,... 
\ 

with K^O- 

3,3 k., K — -J, 3, /,... 

(4.16) 

(4.17) 
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Substituting (4.17) into (A.12) we obtain 

U.-O 

M3 = SlSjß" 

= 4:ß4(% M4 - *;«« (^ + 2ß2) + 3 

»7 - 7:6/0+f+i«2)+£«/+^v3 (4_i8) 

u.-^"»^^^*^* 5*2* K' 
+ T6   (6 + 2ß2 + Ä6^ + T6   (4 + 2ß2) + 105 

+ t6iß  +Äe 

Ul0- io:610i(f + |«2H| + K+^+w + K + I«!1 

+ai .Vf + V +1 + 62 + «J, + ^(I +1,2 + i,*, 

The Edgeworth expansion is a series representation of a standardized 

probability density function in terms of Tchcbycheff-Hermite polynomials, 

the first term of which is the standard normal density: 
1 2 

*(x) - y^- e 2  . (4.19) 

The motivation for considering an Edgeworth expansion rather than the 

formally equivalent Gram-Charlier Type A series lies in practical 

applications for which only a small number of terms are used [14].  In 

-<■ 
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standardized measure, the first few terms of the Edgeworth expansion 

are found from [14, p. 229] to be 

An added benefit In using expansions such as (4.20) Is the ease In 

obtaining an approximation to the cdf, F(x), in fact, with 

-»       x 

F(x) = W)**'**(%)-ijr*s*{2\x)] 

+ l4r4 ' (x)+ 61 K3 ♦ (x)J 

_   riK    .(♦)       +35 KK       (6)       +280    3     (8)     , 
l5:  K5 •    (x) + 71  K3K4 '     (x) +   9!    K3 "^     (x)^ 

(4.21) 

or,  after "simplification," 

F(x) ■ *(x)+ *(x)[(¥3 - 3ßiß5 + i5ßiß7(!+ K' " if6!3^ 

+ x(3ß4(f + i62) -fß^B6) 

+ x2(-3163 + 601ß5 - 45ß1ß7(| + |62) + 70ß3ß9) 

+ x3(ß4(| + |62) + Sßjß6) 

4 5 7 N      1 3 9 + xVß^3 + 15ß1ß  (f + fe2) - 35ßjß^) 

+ x5e^2
13
6)+x6(-ß1ß7(f + ^2)+^ß9) 

+x8(-|   ßjß9)]. (4.22) 

At this point, it seems worthwhile to interpret the parameters we 

have been using.  We will assume that the signal energy is the same in 



'.1 

T     T 
each channel of the correlator, or S S - SS •  Interpreting the Input 

1 T 
signal energy, E  , as TS-S., we find that ß is given by: 

in 

N^ /l+y    SNR. 
(4.23) 

2, 2 
where we have defined y  ■ (^Z0!' Y, " (1 + Y)/Y. and the input signal- 

2 
to-noise ratio as SNR. = E  /o . We now define a correlation factor, 

1   Sin 1 

CORK, by 

CORK = 

T 
flf2 
T 

S1S1 

(4.2A) 

which is easily shown to satisfy: 

-1 < CORR < 1. 

Finally, we obtain 

N • CORR • SNR, 

B, 
/7 

and (A. 25) 

S2 ■ NY1SNRi. 

A suitable performance index for binary antipodal signaling is 

p(Y, CORR, SNR^.N) = 
i      o 

2|u |   2|CORR| • N1/2 • SNR 

z    /Y+ ( 1 + y)  SNR. 
(4.26) 

The above performance index (4.26) is illustrated in Figure 4.1.  For 

a fixed reference correlation receiver, with Y = 0, and reference 

T T 
signal S  -, such that S rS   »S.S.,  and rer ref ref   1 1 

T 
S.S , 
1 ref 

a --*5 . 
S1S2 

our performance index becomes 

(4.27) 

MM 
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.1 ^miQfir        ^r 

.01 
yr      N= 10 

10 100 

Figure 4.1 TTie performance indox, p, vs. SNR. 
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p (0, CORK, SNR.,N) = 2a|C0RR|/N • SNR . (4.28) 

We can now define an efficiency factor, EF, as 

EF(Y, a, SNRJ 
p(Y, CORR, SNR ,N) /SNR, 

i'  P (0, CORR, SNR., N)   /TTTTT—TT^S- a    ' x     a/y + (1 + Y)SNR 

(4.29) 

The abova efficiency factor (4.29) is shown in Figure 4.2.  EF(Y, a, SNR ) 

provides us with a  strong indication of the tradeoffs involved in 

choosing between a predistorted replica correlation receiver and a fixed- 

reference correlation receiver. 

With the above interpretations in mind, we return to the Edgeworth 

approximation of the cdf given in (4.22).  Since ^'(x)  is the well- 

tabulated standard normal integral, we need only concern ourselves with 

the non-normal component of the cdf, H(x), defined by 

H(x) - F(x) -x|/(x). (4.30) 

The Edgeworth approximation of (4.30) given by (4.22) is shown in 

Figure 4.3 for  |x| £ 5 and several choices of N, SNR , Y. and CORR. 

Only positive values of CORR were used since 

H(x) |     = -H(-x)I 
-CORR       CORR 

(4.31) 

Figure 4.3 suggests that H(x), the non-normal component of the cdf F(x) 

is not of large magnitude, and tonds to decrease with increasing N. 

Consequently, an investigation of the behavior of (t> (O for large N 

would seem appropriate. 
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1000 

Figure 4.2 The efficiency factor, EF, vs. SNRj 
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(a) N = 100, SNRi = .1, y ■ 1 

Figure 4.3 Edgeworth approximation of H(x) 
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.005 

(c)  N » 100,  SNR.  ■ 10,  Y ■ 1 

d^^^^^^ 
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i      i      i      I      rr^^i      t      rrrrrr^rri 
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,004 p     r>ir>r>irrrrrtitit 

(e)  N - 100,  Smi ■ l,  Y "  .1 
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(f)  N =  100,   SNR.   =  10,   Y =   .1 

-« 
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,-3 -io x. *■ I      I _J 
(g)  N = 1000,  SN^ - .1, Y " 1 

SJ 
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3 x 10 
-3 
■■     ?      r     i       i       i       <       i       i      i      r      i       i       i      i       i       i       i      i      i      i 

-3 x 10 -3 

-5 0 

(h)   N =   1000,   SNRi  - 1,   y • 1 
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1.5 x 10 
3p        I I I I t I t t I T I t I I I I I I t I 

-1.5 x 10 "L     i      i      i      i      i      i      i      i      i      «      i      i      »      i 

-5 0 

(i)  N =  1000,   SNRi =   10,   Y =  1 

iiii 

5 

^t< 
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1.5 x 10 •Of     r    i      i itiitiiiiiririiii 

-1.5 x  10 ~™      ....... 

-5 
>      i      i      t      i      i     -i      i      i 

(j)   N »  1000,   SNR    ■   .1,   Y "  .1 
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(k)   N =  1000,   SNRi =  1,   Y -   .1 

/ 

M^M 



4  x  10 

6 h 

-4»     iiiitiiiiiiiti 

-4 x 10 

i      i      i'     i      i      * 

"^      ■.■................* 

-5 

(1)   N = 1000,   SNR    = 10,   Y  =   -1 

^J 

m     ■      '»■ 



From (*.8), we have 

* (O = (1 + ßV)2 exp|-^ ^H >' (4'32) 

where 

fi2 _     1        , o 
^ N(l + Yj^SN^)  N ■> " ' 

CORK • SNI^ 

and 

1    N1/2/r (1 + Y1 SNRi)- 

2   VNR1 
e2ß " 1 + Yj SNRi ' 

N 

Noting that (1 + ßV) 2 N - » exp i-\  (1 + T^ SNR )}> we flnd ,:hat 

Lla « (C) a •    , i.e., n is approximately normal for large N. With 
N- n 

this important result, we note that the ordering of the bracketed terms 

in the Edgeworth expansion (4.20) and (4.21) are arranged such that 

successive terms decrease as increasing integral powers ot N   , as 

shown in [141. Even with these important remarks, we still have no 

feel for the error in our approximation.  (In fact, the Edgeworth series 

does not always converge [14].)  Consequently, we will now consider a 

method for the numerical computation of H(x) directly from tn* 

characteristic function. 

A well-known result from probability tieory is that if a and b 

are continuity points of a cdf F(.) having ch.f. 4)(.), then 

F(b) - F(a) = lim 2^ 
T-x»  ' _T 

T -Jt«   -Jtb 

The similarity between (4.33) and the well-known Fourier integral suggests 

that a Fast Fourier Transform (FFT) algorithm might be used to provide 

-JtD 
-^-3  4.(t)dt.      (4.33) 
j t 

I 
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an efficient numerical computation of   (4.33).    With    x «= b    and    a - 0, 

we may rewrite  (4.33)  as 

FW-F(0).U.   i[   [   ^l±±Mdt + 
A(-t)e3xt . ,(t)e-jxt 

jt 
-dt] 

(4.34) 

Now,  assuming that    p(*)     is absolutely integrable and defining 

mi_ [ rH-t) ± m dt> 
T       2ii     J Jt 

0 

we have 

dx 'X; 2TT 
e-jXtdt. (4.35N 

and 

t    _ J_     f  2j_Imj^t). 
LT        27T      J jt 

0 

- M ± i-1 T J t 
ejXt   f(x)dx]dt 

f(x)   [ 
sin xt 

J    . 
0 

dt]dx. 

Noting   that 

sin xt 

r . x < o 

dt =•<   0  ,  x = 0    , 

f .  x> 0 

we find that 

lim 4 " "J " F(0). 

^IJ m^mt 
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so that we may write 

or 

F(x) - i + Um -^ 

F(x) - I - "■ i 

*f-t^
Xt - .(t)e-^t 

jt 

Im f.Kt)e~jXt:} dt 
t 

dt. 

(4.36) 

Equation (4.36) can also be found in [13].  If we could remove the  Im(.) 

operation from inside the integ.-al, we could easily implement an FFT 

algorithm.  Following Hutfcll [15 1, we alleviate this problem by using 

"The old give and take trick." Choose a(t)  such that 
T 

i) Fa(x) - I " "« 7 
f Im {a(t)e":ixt} dt 

and 

^ t(t) - a(t) e Ll (0> „.)_ 

For such an a(.), we have 

-jxt 

F(x)-Fa(x)-lim i I. ( j ^  ; a^))e" X dt>.     (4.37) 

l0.2 
in particular, choosing a(t) - «"2 t . we have fjx)  - ♦(«) and 

T 

H(x) ■ -lim - Im ( 
X-x» 

U(t)  - a(t))e-
3xt it) 

t 
(4.38) 

Defining 

M (<|)(t ) - a(t ))e"jXtm 
r     m     m  

g(x) = At I  ^~ 
m»l 

we may approximate H(x)  as 

m 

where 

H(xjl) ~--  Im g(x^), 

.for t ■ (m-l)AT, ra = 1, 2, ..., M, and x^ = 

(4.39) 

2*(Z  - 1) 
ItAt 

t - 1, 2, .... M, we have 

_ 
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M (Htm}  - a(tm))     -J2.U-1) (m-D^ 
g(xÄ) ' tt    I  exp{ -1—s ^—^ L}, 

m=l      m 
(4.40) 

which is precisely in the form for which the FFT Is designed.  We now 

need only to choose a At and an M = T/At so that the approximation 

(4.39) is a good one.  First, we note that g(x.) is periodic with 
X* 

period    —,   i.e., g(x^ + TT)  " SOO-     In particular, we have,with 

Ax » 2IT/T: 

r^^i+m+i^ m = -P-f1) -P-f1] +1 "I 

g(mA x)  =-< 

Vg(x 8^Xm + l)'  ■ " 0»  1»  2»   •••»   Ijl« 

(4.41) 

so that we have obtained an approximation of    H(x)     for     |x|  _< —Ax. 

The approximation "f   (4.39)  and   (4.40)   Involves errors due to 

truncating the integration limit as well as a sampling error due to 

approximating the truncated integral with a Riemann sum.     Standard 

numerical analysis techniques could, of course, be applied to 

approximate and/or bound these errors      Alternatively,   in view of the 

fact that we may rfwrite  (4.38) a:j 

H(x)  - ^ 
(W  - a(t))e-Jxt

Jtt (442) 

we find that we are simply approximating a Fourier Integral with the 

FFT.  Consequently, the results of Coolcy, Lewis, and Welch [16], for 

example, can be exploited to provide appropriate error bounds. 

Following [iM» and defining: 

d(t) ,!& -a(t)t (4>43) 

and 

d (t) ■ J d(t + kT), 
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H (x) - I  H(x + kX), 
k"-00 

(4.43) 

it is easily shown that 

and 

H(X£3 = 2. J dp(t) eXp{" ^T  }     ' 
0 

X 

d(t ) = -j 
B 

Furthermore, 

„ . v j(m - DuAt H (u)eJV       du. 
P 

M 
{d (t )}M .  and {H (x )}    are related by: 

p m m=l        P  *  »■* 

i&t r   /  x   f-i2Tr(m-l)(£ - 1), 

m=l 
and 

?  ,  x   .iZudn - l)(fc - 1)1 (tj - -jAx I  H (x)l)exp{
J v ^ *•). 

1*1  P p m 

(4.44) 

(4.45) 

As noted previously, we are making the approximation 

H(Xo)=iM I    d(tm)exp(^_L_-2i    t). (4.46) 
HCx^) 

m"l 

We will bound the error in (4.46) via the inequality: 

|H(xJ-H(xf)l  1  lH(x.)-H  (x  )MH  (x^)  - ftfc^ |.       (4.47) r *' 

Noting that 

M 

l».<«i)-*<Vlig  I. iw-«1.^ V r     v n'' - 2Tr 
(4.48) 

m=l 

appropriate bounds for  IH^) - Hp(xt)| and [d^tj- ditjl    will be 

found and used in (4.47) .  The well-known Itorkov inequality states that 

•iNlCiMinn (4.49) 
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Note that for v an even positive integer the bound in (4.49) 

involves the vth moment of n, and that the bound decreases more 

rapidly with increasing e for larger v.  Since ii10 is available 

from (4.18), the following bound (4.50) may be computed. 

P[|nlle]1u10/e
10 (^0) 

Using (4.50) and an inequality given in [17, p. 39], we find that 

"10. 1 4 c2 

lH(x)i i-^ö + re 2   • (4.51) 

for all x such that  |x| > e. 

Noting that for all x such that  |x| 1 "J we have  lx±kxl 1  2  ^ 

and making use of (4.43) and (4.51) we find that 

oo 

lH(x) - H (x)1 < I  lH(x - kX)| + |H(x + kX)| 
P     k-1 

(for X^Z) 

< .^„«K10 * (Kw> ♦ 5 ^i • ^ 

+ 2V10    I    ( 2 k=3 

2k-lX)-10+.l exp{-|(^X)
2}. 

k-3 

The series are easily bounded as 

and 

I c^fV10 < i 
k=3 

- X 
10.    _ i,3„r10 

x    dx = TVj*'       > 

2A 

12 
C r   l/2k-l  v,2,   ^   1     r       "2X   . 

K=3 
2v    2 X    J 

2A 

9 2 -I» 2 8 
< —j e 

3X2 

t\mm ^mmam 
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We have: 

IH(X)-H(X)| i2.10i(^r10
+|(|xr10] 

-U2 

4^x2+^>-8  ^ (4.52) 

M 
which would be the only bound necessary if ^«^^^1» the 

"pre-aliased" version [16] of U^)}^ were available.  Similarly, 

2k - 1 
noting that for all t such that  |t| 1 T/2, we have  [t + kll i  2  T, 

from (4.43) we obtain 

!Mt-kT)i-H la(t-kT)H- l»(t-HcT)! + !a(t-HcT) 
,dn(t)-d(t)i < I 
p k-1 2k - 1 

Now, since  i Mt) | 

have 

!>(t)i  and  |a(t)|  are strictly decreasing with  j 11 , we 

-   IK^DI + I.C^) 
idn(t)-d(t)!  1 2  I  -   -^ 

p k=l 
2k- 1 

li (:*4T)| + |a4T>|^k(fr)|+f|-(fr)|) 

+ 1  I    M^ldu.f iliäl du. (4.53) 

2i 1T 

Recall that for the problem at hand, $(t) and a(t) are given by: 

N      f-is.ßV-k.ß2/. 
(4.54) 2 2 2 

:(t) = (1 + £■ t )  exp 
l-jB^t" - ^^^ t 

2 2 
1 + 3 t 

and 

a(t) = e 
-b2 

*^ma *m 
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We have; 

(for    N  >  2) 

ST 
r > 

1 ,   „2-2 
2 ^i3 

< exr< XTr   I 
L+S r I   J

fi 

l + u 

^       -1 2  ~2 
u     (1 + u  )     du 

r 

= exp-" 

J 

hi32B2T2 

ST 

f N 

2  2 
1 + B T 

HJ   22 (x-ir'x'dx 
l + ß  T 

io o2n;' 

ex,-< 
~89ß  T 

L 
2  2 

1 + ;^  T 
J 

2S2T2 

N 
'2 dx 

2 2 
1 + 3 T 

1.   .2^2, 

?   2 2  2  2 
(N- 2)8 T (1 + 8 T ) 

a b^i). 

(4..SS) 

and 
4t2 1 »2 T 

fi^il   dt  <i  f  e"2       dt  <\   e2   '     ^b.(T). 
J       t 
T 

-T  J 
T 

"I2 
(4.56) 

Combining  (4.47),   (4.48),  and ( 4.52) through  (4.56), we  finally obtain; 

iHUp - H(x^ j  1 2y10( (ix)"10 +|(|X)-10] 

-ix2 -^ x2 
1   ,    8      t ,1  .   K  . 8      , 

NAt 
2"T 

^d T)i + la(iT)! +ik(fr)|+||a(fr)l] 

+ f^Dl(lT) +b2(lT) (4  57) 
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Note that X = ZwM/T, and MAt = T.  For any range yielding suitably 

small errors, we have: 

|(| x)-10 « (ix)"10 

-5 x2   -i x2 
(i + -i-)e

8    «e8 

^3  3X; 

|k(fT)| « i^^T)! 

i|a(|T)| « |a(|T)| 

b^l T) « U(|T)1 

b2(f T) « la(^T)| 

Hence, a very good approximation to (4.47) is 

i"^t)-"<vii2vs'10+2s-'-iv!>+^i*(iT>l+e'5Tl 

(4.58) 

The approximate bound of (4.58) is shown in Figure 4.4 for 

N - 100, CORR - 1, SNR. E {.1, 1, 10), Yc{.l, U, and several values of 

M.  Since th.." bound is decreasing with increasing N and decreasing 

ICORRI, Figure 4.4 suggests that lor T = 40TI, N _> 100, |C0RRl 1 1, 

.1 < SNR. < 10, .1 1 Y 1 1. and M = 1024, an error of less than 10 

will result.  For this choice of T, we have Ax = .05, which should 

provide both acceptable resolution and error in approximating H(x) 

by H(x ) in (4.16).  Figure 4.5 illustrates the numerical results for 

parameter choices corresponding to those of Figure 4.3.  A careful com- 

parison of Figures 4.3 and 4.5 reveals several discrepancies, indicating 

that the numerical inversion technique with Its associated error bound 

is indeed worthwhile. 

.-10 

^«i 
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Although both the Edgeworth approximation (4.22) and the numerical 

inversion computation (4.46) are useful, their usefulness decreases when 

considering the tails of the cdf F(x).  Consequently, a "tight" bound 

on the tails of F(x) would be desirable. The Markov inequality (4.59) 

can, of course, be used, but the so-called Chernoff bound [17, pp. 118-122] 

decreases exponentially, whereas (4.49) decreases only as E  . Also, 

the distribution under consideration here is skewed (since K3 ^ 0), a 

property which is lost when using bounds such as (4.49). 

Consider for  X ^ 0: 
00 

r 
Pin > e} = dF (x) 

n 

f  X(x - e).- , N 
<, e       dFn^ 

= e-Xe [ eXx dF (x) 
J      1 

n 

for all \  -  0,  si'ch that * <-JX)  exists.  From the development of 

2„2 
(4.8)  it is easily seen that $ (-j^) exists only for AB < L. 

Similarly, for \ ± 0: 
€ 

I-v e) 
P{n ' C) - [ dF^(x) < j eA(x " wdF.(x) 

«= e   j e dF (x) J    n 

e'XC ^(-J^). 

for all X ^ 0 such that ♦-(jM exists. 

m 

^AJ «M 
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2 2 
Defining, li(^) ■ lot'. ♦„(-.1*) (A P * D» we hnvt' 

P{n > E) < e"At + h(X), for 0 1 A < 1/3. 

and 

P{n < c} < e"Ae + h(X), for -1/3 < X < 0. 

We now seeK to minimize the quantity b(A) = exp{h(X) - Xe} with respect 

to X.  We have: 

iff 

if 

and 

We have: 

iff 

b'CX) = (h'CX) - e) b(X) = 0 

h'CX) = e, where h'(X)  ■ e will result in the minimum bU) 

i) there exists a X such that h'CX) = E 

ii) b'^X) | > 0 . 
c=h'(X) 

b,,^)ic.h'(xrh,,(A)b(x)i:h? e-h'U) 

W'(\)\  > 0 , 
e-h'CX) 

and 

h"iX)\ -   e 
t^h'a) 

-h(X) 
(x-c)2eAxdFn(x) > 0. 

implying that E = h'(X) does lead to the minimum b(X). For the problem 

at hand, 

and 

^ "i 1  2 2 
M     2 2  M x +5M x 

h(X) - -^log(l-3ZX^+— i-M  
2 1-3 X^ 

h'CX) 

9      12   4 3    5 4 
(N + 32)3 X + SSj^ X -N3 XJ - Sj^B X 

2 2 2 
(1 - 3 xV 

(4.59) 

^^H-A 
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The bounds of Intereat become 

F(„. *•(«)< .««-^'^forOiX.i.       (4.60) 

and 

P{n<h'(X;><.eh(X)-Ah,(X),for-i<AlO. 

We note that  (h^X):  0 £ A < j} = U: 0 < x < -) and 

{h«(X): -- <  \  <  0)  =  ix:     -• < X <. 0).  The bounds of C4.fi0) are 

illustrated in Figure 5.6 for  jh'CX)! ± 10,  CORK = 1, 

Ne{2, 10, 100, 1000}, SNR^l.l, 1, 10}, and  r E (.1, 1}. Note that 

the bounds of (1.60) are decreasing with  |C0RR| and that 

P{n<e}l   =P{rl>-e}!   . (4-61) 

-CORR C0RR 
and 

P{n > e}|   = Pin < -c}| 
-CORR CORR 

We now have a relatively complete characterization of the cdf ^00, 
I - 11 

where n is the standardized r.v. n ■ —-—~.     In order to use 
z 

these results for the r.v. z, we note that 

, /* ' \\ (4.62) 
F (x) ■ F, z 

^M 
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Figure 4.6  Chernoff bounds for cdf tails 
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V   Conclusion 

In this report, we have studied two predistorted-replica 

correlation receivers:  The FLAG receiver and the ARSAC receiver. A 

Doppler analysis was perforraed for each, the results of which indicate 

that for signal time bandwidth products TW such that 

U - 1| < 2^. 

the difference in sensitivity is not dramatic; however,  for larger 

time-bandwidth products the ARSAC receiver vastly outperforms the 

FLAC receiver. 

Sections II-C and III-C pointed out that the FLAC concept can 

perform satisfactorily in a multiple user environment; whereas the 

ARSAC concept will not. 

Sections II-B and III-B dealt with discrete time structures for 

the FLAC and the ARSAC systems,  respectively.     In fact,  a digital 

realization of the FLAC receiver can be made  requiring only two 

additions and one multiply per output sample.    The output, y  ,  for the 

FLAC receiver is,  from Section II-B: 

L-l 
y   "- I R R     T 
«  p-on"p   n-L-P 

(5.1) 

or 
L-2 

y   u.!   " I      R R      T 'n + 1      J*.      n"P     n-L-p p—1 

n-L+l    n + 1        n-2L + l n 

indicating that if y£ ■ 0, and Rn = 0 "r all n < I,   (5.2) is 

equivalent to (5.1) fov  all  n ■ t, t*l, t+2,  

rtM 
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It  is to be emphasized that the assumptions made about  the channel 

imply that there is no intersymbol interference,  an assumption which 

is certainly restrictive.     For the known signal case,  several authors 

have shown that the optimal  structure is a matched filter followed by 

a transversal filter  [3].     It  is conjectured here that similar per- 

formance improvement can be obtained by following the predistorted 

replica correlation receiver by a transversal  filter. 

Finally,   the noise performance for the family of predistorted 

replica correlation receivers was dealt with in Section IV.    The 

analysis there assumed that the noise component of the received process 

was additive Gaussian noise,  such that the samples of the received 

process were uncorrelated. 
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